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ABSTRACT

Numerical weather prediction models often fail to correctly forecast convection initiation (CI) at night. To

improve our understanding of such events, researchers collected a unique dataset of thermodynamic and

kinematic remote sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment.

This study evaluates the impacts made to a nocturnal CI forecast on 26 June 2015 by assimilating a network of

atmospheric emitted radiance interferometers (AERIs), Doppler lidars, radio wind profilers, high-frequency

rawinsondes, and mobile surface observations using an advanced, ensemble-based data assimilation system.

Relative to operational forecasts, assimilating the PECAN dataset improves the timing, location, and

orientation of the CI event. Specifically, radio wind profilers and rawinsondes are shown to be the most

impactful instrument by enhancing the moisture advection into the region of CI in the forecast. Assimilating

thermodynamic profiles collected by the AERIs increases midlevel moisture and improves the ensemble

probability of CI in the forecast. The impacts of assimilating the radio wind profilers, AERI retrievals, and

rawinsondes remain large throughout forecasting the growth of the CI event into a mesoscale convective

system. Assimilating Doppler lidar and surface data only slightly improves the CI forecast by enhancing the

convergence along an outflow boundary that partially forces the nocturnal CI event. Our findings suggest

that a mesoscale network of profiling and surface instruments has the potential to greatly improve short-term

forecasts of nocturnal convection.

1. Introduction

Convection initiation (CI) refers to the process in

which an air parcel is successfully lifted to its level of free

convection (LFC) and produces a precipitating updraft

(Markowski andRichardson 2010). At night in theGreat

Plains of the United States, CI commonly contributes to a

nocturnal maximum in summer precipitation (e.g., Surcel

et al. 2010). Nocturnal CI in the Great Plains also leads

to thunderstorms that produce all severe weather hazards

(Grant 1995; Horgan et al. 2007), although hail and

wind are the most common threats (Reif and Bluestein

2017). Past studies have shown that numerical weather

prediction (NWP) models that employ convective

parameterizations often underpredict nocturnal con-

vective events in the High Plains of the United States

(Davis et al. 2006). Although various deficiencies have

been resolved through the use of convection-resolving

models (Weisman et al. 2008), many of the mechanisms

that initiate convection at night remain problematic for

NWP forecasts (e.g., Johnson and Wang 2017; Johnson

et al. 2017; Stelten andGallus 2017; Johnson et al. 2018).

Reif and Bluestein (2017) note that NWP models are

often tuned specifically for features that initiate surface-

based convection, whereas nocturnal CI tends to be

initiated by features above the boundary layer (Corfidi

et al. 2008). For example, the nocturnal low-level

jet (LLJ), defined as a wind maximum occurring

within the lowest kilometer of the atmosphere after

sunset (Bonner 1968; Shapiro et al. 2016), commonlyCorresponding author: Samuel K. Degelia, sdegelia@ou.edu
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contributes to the development of nocturnal convection

through enhanced convergence at its terminus (Trier

and Parsons 1993). However, various studies find that

NWP models often fail to correctly forecast both the

height and strength of the LLJ (Storm et al. 2009; Shin

and Hong 2011; Smith et al. 2015; Johnson and Wang

2017; Johnson et al. 2017). Additionally, models can

sometimes have difficulty in correctly simulating the

elevated moist layer that is key to generating nocturnal

CI. Peters et al. (2017) connect errors in mesoscale

convective system (MCS) forecasts to moisture biases,

and in the simulations with negative moisture biases the

models produce errors in both CI timing and location

due to the parcels requiring additional residence time

within the lifting regions.

Assimilating kinematic and thermodynamic obser-

vations can improve many of the above issues related

to forecasting nocturnal CI. Recently, Degelia et al.

(2018) show improvements to a nocturnal CI forecast

by assimilating conventional and radar observations.

They find that assimilating these data enhances the

buoyancy and convergence prior to CI, while the radar

observations aid in suppressing spurious convection

and erroneous outflow boundaries. However, the ob-

servations assimilated in Degelia et al. (2018) have

become routinely assimilated in operational centers

and their impacts are now relatively understood. This

study expands upon the findings of Degelia et al. (2018)

by evaluating the forecast impact of assimilating a novel

dataset collected during the Plains Elevated Convection

at Night (PECAN; Geerts et al. 2017) field campaign.

The PECAN project seeks to better understand the

processes responsible for nocturnal convection in the

Great Plains with a focus on nocturnal CI, MCSs, at-

mospheric bores, and the LLJ (Geerts et al. 2017). The

data collected during the field campaign included a

network of thermodynamic and kinematic profilers

similar to that recommended by the National Research

Council (2009).

The observations assimilated here consist of atmo-

spheric emitted radiance interferometers (AERIs; Turner

and Löhnert 2014), Doppler wind lidars (e.g., Menzies

and Hardesty 1989), radio wind profilers (e.g., Benjamin

et al. 2004), high-frequency rawinsondes, and special sur-

face data taken from fixed and mobile PECAN platforms.

Assimilating similar datasets individually has been

shown to improve convective-scale forecasts of various

features (e.g., Kawabata et al. 2007; Wulfmeyer et al.

2006), although no known studies focus specifically on

nocturnal CI. Most prior observation impact studies

connect improved forecasts to modifications of the low-

level moisture field. For example, Benjamin et al. (2004)

and Kawabata et al. (2014) show that assimilating radio

wind profilers or Doppler lidars can lead to moisture

improvements that increase the convective available

potential energy. Hitchcock et al. (2016) also show

midlevel moisture improvements, but from assimilating

special rawinsonde observations collected during a field

campaign. Similarly, Sobash and Stensrud (2015) dem-

onstrate improved diurnal CI forecasts through the as-

similation of surface mesonet observations that increase

the moisture within the boundary layer. Until recently,

previous studies that evaluate the impact of assimilating

AERI profiles have only assimilated simulated obser-

vations (Hartung et al. 2011; Otkin et al. 2011). These

works find that AERI data can also improve boundary

layer thermodynamics. A recent study by Coniglio et al.

(2019) shows that assimilating real, high-frequency AERI

retrievals can lead to improvements, albeit nonsignificant,

in short-term convective forecasts. However, the Coniglio

et al. (2019) study only assimilates data from a single

AERI, and for a short period (2–5 h) prior to CI.

Therefore, we aim to expand upon previous works by

assimilating data collected by multiple AERI platforms

and over a longer period of assimilation.

This study focuses on the 26 June 2015 nocturnal CI

event during PECAN. The CI of interest occurred near

an elevated moist layer located just north of the in-

tersection of the LLJ with a synoptic boundary. Such

placement is commonly observed during nocturnal CI

events in the Great Plains. This paper tests the hypoth-

esis that assimilating a large network of many differ-

ent PECAN observations can improve the simulation of

both the elevated moist layer and the ascent mechanisms.

In addition to evaluating the impact of assimilating

the entire PECAN dataset, data denial experiments are

presented to assess the relative impact of each observa-

tion type.

An overview of the 26 June 2015 CI is presented in

section 2. Section 3 discusses the data, models, and

methods we use to evaluate the impact of assimilating

the PECAN observations on the CI case study. The as-

similation and data denial results are found in section 4.

An ingredients-based approach is applied in section 5 to

better understand what aspects of the environment lead

to the observation sensitivities for CI, and in section 6

the moisture and kinematic impacts discussed in the

previous section are explored through diagnosing the

data assimilation (DA) cycles. A final summary is found

in section 7.

2. Overview of the 26 June 2015 nocturnal CI event

As an upper-level ridge deepened over the southwestern

United States on 25 June 2015 (Fig. 1a), northwesterly flow

developed above the central Great Plains. A surface
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FIG. 1.Overview of themechanisms leading to nocturnal CI on 26 Jun including (a) 500-hPa geopotential height (m; black contours) and

winds (m s21; color fill and barbs) valid at 0300 UTC 26 Jun, (b) 850-hPa winds (m s21; color fill and barbs) and surface temperature

contours (8C; red), and (c) a PECAN sounding taken from the location of the yellow star in (b) at 0215 UTC 26 Jun. In (a) and (b) the half

barbs represent wind speeds of 2.5m s21 and the full barbs represent wind speeds of 5m s21. The red dashed line in (a) represents the

location of a shortwave trough axis, the brown dashed line in (a) and (b) represents the location of the synoptic boundary discussed in the

text, and the dashed green circle in (b) indicates the approximate LLJ terminus. The plotting domains in (a) and (b) represent the outer

and inner domains used for the simulations in this study, respectively. The gray box in (b) indicates the plotting domain for Fig. 8, below.

The states of Kansas (KS), Nebraska (NE), Missouri (MO), and Oklahoma (OK) are also labeled in (b). The plots in (a) and (b) are

created usingmodel analyses from theRapidRefreshmodel (Benjamin et al. 2016). The sounding in (c) is plotted using the quality-control

checks provided by Loehrer et al. (1996). Except for the wind data being superob-ed to a depth of 20 hPa, the data in (c) are processed

using the same methods described in the appendix.
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FIG. 2. Evolution of the 25–26 Jun nocturnal CI event in terms of composite reflectivity (dBZ; bottom color bar).

The reflectivity data are provided by the MRMS (Smith et al. 2016). Additionally, an objective analysis of surface

temperature (8C; right color bar) is shown using a two-dimensional linear spline interpolation. Surface temperature

contours are also plotted in gray every 28C. The observations in the objective analysis are obtained from the

MesoWest program (Horel et al. 2002). The FP and MP PISAs are labeled in (a). Also overlaid are both the

PECAN observations and conventional NDAS observations that are assimilated in this study. The circle in

(c) indicates the location of two surface-based cells discussed in the text. The gray box shown in (d) indicates the

plotting domain for Fig. 11, below. The circles in (e) and (f) indicate the nocturnal CI event of interest.
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low, related to an embedded shortwave trough (Fig. 1a),

strengthened a stalled, preexisting frontal boundary

into a synoptic cold front (Figs. 1a,b). Additionally, a

cold pool generated by early afternoon convection ap-

pears to have further reinforced this synoptic front

(Fig. 2b). By the late afternoon of 25 June, stronger,

surface-based cells developed along the synoptic boundary

in central Kansas (Fig. 2c). After sunset at 0154UTC (2054

LST), a southwesterly, criterion-1 LLJ (12.5ms21; Bonner

1968) developed across western Oklahoma and central

Kansas (Fig. 1b).

Conditions were favorable for further convective de-

velopment after sunset on 25–26 June. First, large-scale

isentropic ascent developed throughout northern

Kansas due to the interaction of theLLJwith the synoptic

boundary (Fig. 1b). Second, an additional mesoscale

convergence zone associated with the northern terminus

of the LLJ was present in northeastern Kansas (circled

in Fig. 1b). At approximately 0215UTC 26 June, a linear

band of convective cells, which were disconnected from

storms along the synoptic boundary, initiated in north-

ern Kansas. These cells began to merge together with

additional clusters of convection that developed in

northwestern Missouri (Fig. 2g). This arcing band of

nocturnal convection (Figs. 2e,f) is the focal point of this

study. The convective cluster continued to grow up-

scale into an MCS (Fig. 2h) that propagated southeast-

ward, producing both severe wind and flash flooding

throughout eastern Kansas. We note that many other

nocturnal CI events occurred throughout Kansas on

26 June 2015, some of which are discussed in Trier

et al. (2017).

Mobile observing platforms were deployed for this

event as part of intensive observing period (IOP) 16. A

sounding taken by a PECAN vehicle showed a moist

layer atop the frontal inversion north of the synoptic

boundary (Fig. 1c). Significant instability (.3000 J kg21)

was associated with elevated air parcels, although some

inhibition had to be overcome before CI could take

place. As surface-based parcels were located below the

frontal inversion, much of the nocturnal CI episode of

interest was likely elevated. However, recent analyses of

this event by Trier et al. (2018) and Sun and Trier (2018)

highlight the potential role of outflow boundaries in the

southern portion of the nocturnal CI event. In particular,

the surface-based cells in Fig. 2c produced an outflow

FIG. 3. Series of (a)–(c) the number of PECAN observations assimilated in the ALL experiment and

(d)–(f) consistency ratio at each data assimilation cycle. The vertical gray lines indicate the transition from as-

similating the PECAN observations on the outer domain (every 3 h) to assimilating them on the inner domain

(every 10min). The inner domain observation counts and consistency ratios (right of the vertical gray lines) are only

plotted for every third cycle. The colors in (a)–(c) correspond to the observation type assimilated in ALL that was

denied from its respective denial experiments labeled in (d)–(f). For example, the red line in (a)–(c) represents the

number of AERI observations assimilated in ALL.

AUGUST 2019 DEGEL IA ET AL . 2743

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020



boundary that moved northward through the region of

nocturnal CI and that will be discussed throughout this

text. These findings indicate that some of the early cells in

this CI event (Fig. 2e) were surface based.

3. Methods

a. Overview of the PECAN dataset

During PECAN, IOP observations were obtained

from both fixed and mobile PECAN Integrated

Sounding Arrays (PISAs). Each fixed (FP; Fig. 2a) and

mobile PISA (MP) featured different instruments as

described by Geerts et al. (2017). Data were also col-

lected from separate mobile mesonetworks, mobile

GPS Advanced Upper-Air Sounding Systems (MGAUS),

aircraft, and Doppler radar platforms. The PECAN

observations assimilated in this study were collected

during both IOP 15 (25 June) and IOP 16 (26 June) and

varied throughout the assimilation period (Figs. 3a–c).

These include AERIs [;5-min thermodynamic profiles

produced by the AERIoe retrieval algorithm in Turner

and Löhnert (2014)], Doppler lidars, radio wind pro-

filers, rawinsondes, and surface observations (Table 1;

Fig. 2). The PECAN observations were obtained from

the PECAN field catalog (available online at http://

catalog.eol.ucar.edu/pecan) in June 2018. Each in-

strument within a single dataset is provided in the same

format and with the same level of quality control. The

only exception is the radio wind profiler from FP3 that

operated at 449MHz, while the other radio wind

TABLE 1. List of PECAN observing sites and instruments that are assimilated for the 26 Jun 2015 case study. Note that the FP1 site

includes three wind profilers spaced by an average of 17 km.

Site name Location Instruments Reference

FP1 Lamont, OK 915-MHz wind profiler (3) Sivaraman et al. (1990)

Rawinsonde UCAR/NCAR (2015a)

FP2 Greensburg, KS AERI Turner (2016a)

Rawinsonde Vermeesch (2015)

Surface obs Delgado and Vermeesch (2016)

FP3 Ellis, KS AERI Turner (2016b)

Doppler lidar Hanesiak and Turner (2016a)

449-MHz wind profiler UCAR/NCAR (2017)

Rawinsonde Clark (2016)

Surface obs UCAR/NCAR (2015b)

FP4 Minden, NE 915-MHz wind profiler UCAR/NCAR (2015c)

Rawinsonde UCAR/NCAR (2016a)

Surface obs UCAR/NCAR (2015b)

FP5 Brewster, KS AERI Turner (2016c)

915-MHz wind profiler UCAR/NCAR (2015d)

Rawinsonde UCAR/NCAR (2016b)

Surface obs UCAR/NCAR (2015b)

FP6 Hesston, KS Doppler lidar Hanesiak and Turner (2016b)

Rawinsonde Holdridge and Turner (2015)

Surface obs Turner (2016d)

MP1 ‘‘CLAMPS’’ Mobile Doppler lidar Turner (2016e)

Rawinsonde Klein et al. (2016)

MP2 ‘‘MIPS’’ Mobile 915-MHz wind profiler Knupp and Wade (2016)

MP3 ‘‘SPARC’’ Mobile AERI Wagner et al. (2016b)

Doppler lidar Wagner et al. (2016a)

Rawinsonde Wagner et al. (2016c)

Surface obs Wagner et al. (2016d)

MP4 ‘‘MISS’’ Mobile 915-MHz wind profiler UCAR/NCAR (2016c)

Rawinsonde UCAR/NCAR (2016d)

Surface obs UCAR/NCAR (2016c)

M-GAUS1 Mobile Rawinsonde Ziegler et al. (2016)

Surface obs Waugh and Ziegler (2017)

M-GAUS2 Mobile Rawinsonde Ziegler et al. (2016)

Surface obs Waugh and Ziegler (2017)

M-GAUS3 Mobile Rawinsonde Ziegler et al. (2016)

Surface obs Waugh and Ziegler (2017)

MM1 Mobile Surface obs Waugh and Ziegler (2017)

MM2 Mobile Surface obs Waugh and Ziegler (2017)

NSSL-NOXP Mobile Surface obs Waugh and Ziegler (2017)
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profilers operated at 915MHz. We further preprocess

each dataset following the methods described in the

appendix. The large benefits from these meticulous

preprocessing steps in the context of an MCS and bore

are shown in Haghi et al. (2018).

We only assimilate vertical profiles of zonal and me-

ridional wind (i.e., no radial velocity data) collected by

the radio wind profilers and Doppler lidars. The radio

wind profilers used during PECAN were composed of

both 449- and 915-MHz profilers (Table 1). Except at

FP3 (see Fig. 2a), the Doppler lidars were not collocated

with radio wind profilers during PECAN. Thus, radio

wind profilers and Doppler lidars could be considered

complimentary for this case. However, differences in the

design of the instruments could lead to different DA

impacts. Doppler lidars are only able to collect useful

information from the lowest 1–3 km of the atmosphere

due to the depth of potential scatterers (Menzies and

Hardesty 1989). Doppler lidars also tend to sample

finer-scale flow fields, such as turbulence, compared to

radio wind profilers. Conversely, radio wind profilers

collect backscatter from larger particles (e.g., hydro-

meteors, dust, and insects) that are present as high as

10 km above ground level (AGL).

The PECAN rawinsondes were launched more fre-

quently than the operational network and at non-

standard times. During 25 June, both the FP and mobile

sites collected rawinsonde data every 3 h. While rawin-

sondes are assimilated from fixed sites throughout the

assimilation period, mobile rawinsondes (from MP and

FIG. 4. Observation error profiles for (a) AERI temperatures (8C), (b) AERImoisture (%RH), and (c) Doppler

lidar winds (m s21) used in Eq. (1). The plots are calculated by averaging each individual error profile associated

with the respective AERI or Doppler lidar observations assimilated in this study. The red lines represent the

rawinsonde instrument error obtained from Vaisala (2017) (sSi; dotted) and the static rawinsonde error from GSI

(sSf; solid). The black lines represent the input observation error profile provided by the PECAN dataset (sPi;

dotted) and the final observation error profile used for DA after inflation (sPf; solid). The values used for a in

Eq. (1) are also annotated for each variable. For AERI observation errors, the values of a vary linearly with height

(from zero to the final bracketed value at 3 km AGL).

TABLE 2. List of the physical parameterization schemes used for all simulations. A different microphysical parameterization scheme is

used for the DA and forecast periods. Note that a cumulus parameterization scheme was not employed on the inner, 4-km domain.

Physical parameterization Scheme Reference

Microphysics (DA) WRF single-moment 6-class (WSM6) Hong and Lim (2006)

Microphysics (forecast) Lin Lin et al. (1983)

Planetary boundary layer Mellor–Yamada–Nakanishi–Niino (MYNN) Nakanishi and Niino (2006)

Longwave radiation Rapid Radiative Transfer Model for general circulation

models (RRTMG)

Iacono et al. (2008)

Shortwave radiation Goddard Tao et al. (2003)

Land surface model Noah Ek et al. (2003)

Cumulus Grell–Freitas Grell and Freitas (2013)
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MGAUS units) were only assimilated from IOP 15 prior

to 0600 UTC 25 June. After 0600 UTC 25 June, rawin-

sonde data were collected from FP1 every 6 h. Because

Privé et al. (2014) show significant improvements when

assimilating rawinsondesmore frequently, we expect the

assimilation of PECAN rawinsondes here to produce a

larger impact than those demonstrated by previous

studies that only evaluate the operational network (e.g.,

Benjamin et al. 2010). We also note that the PECAN

surface observations were collected more frequently

than at operational sites (every 5min at most PECAN

platforms).

b. Treatment of observation errors for AERIs and
Doppler lidars

In any DA algorithm, the observation error covari-

ance matrix partially controls the weight between the

observation and background states. When assimilating a

new dataset, effort should be paid to how the observa-

tion errors are diagnosed (Bormann et al. 2011). Be-

cause radio wind profilers, rawinsondes, and surface

observations are routinely assimilated in operational

systems, we assimilate those PECAN observations using a

preexisting, static error profile built into the Gridpoint

Statistical Interpolation (GSI; Shao et al. 2016) soft-

ware. Conversely, both AERIs and Doppler lidars are

considered experimental and thus their observation er-

rors are less understood. Luckily, both the AERIoe and

lidar algorithms provide unique error profiles for each

observing time using themethods in Turner and Löhnert
(2014) and Newsom et al. (2017), respectively. Assimi-

lating these novel observations with unique error pro-

files allows for less confident retrievals to have a lower

weight in the analysis.

In addition to the instrument error, the observation er-

rors used in aDA system should also include contributions

from representativeness errors (Geer and Bauer 2011).

To account for the representativeness and any other

residual errors, we inflate the AERI and lidar observa-

tion error profiles using

s2
Pf 5s2

Pi 1a(s2
Sf 2s2

Si) , (1)

where s2
Pi is the instrument observation error variance

profile provided by the PECAN dataset and s2
Pf is the

final observation error variance profile used for DA.

The (s2
Sf 2s2

Si) term represents an initial estimate of

the residual error profile for profiling instruments

based on the difference between an instrument un-

certainty profile for rawinsondes (s2
Si; provided by

Vaisala 2017) and the full error profiles for assimi-

lating rawinsondes in GSI (s2
Sf). The static error

profiles in terms of sSi and sSf are shown in red in

Fig. 4. The initial estimate of residual error is then

tuned using the parameter a that varied by instru-

ment. The values of a are chosen by comparing

the skill of nocturnal CI forecasts when varying a

by intervals of 0.25. The selected values are annotated in

Fig. 4. Through a trial-and-error process, we find im-

proved forecasts when linearly increasing a with height

for AERI observations, such that observation errors

near the top of the profile are inflated more. We hy-

pothesize that this is because the observations errors

output by AERIoe only include the diagonal terms of

its posterior error covariance matrix, whereas the off-

diagonal terms are shown to increase with height in

Turner and Löhnert (2014).
Example profiles of input and inflated observation er-

rors for AERIs and Doppler lidars are shown in Fig. 4.

Using this method, the forecast skill for the 26 June

nocturnal CI event is improved compared to assimilating

these observations using rawinsonde errors (not shown).

Geer and Bauer (2011) and Minamide and Zhang (2017)

use a similar approach to inflate observation error co-

variances for microwave imager radiances. This

technique is only meant as a preliminary method for

assimilating theAERI andDoppler lidar observations. In

the future, we plan to further develop an optimal method

for determining observation errors for these instruments.

TABLE 3. Covariance localization radii used for each observation

type assimilated for both the outer and inner domains. The hori-

zontal localization radii are given in kilometers, and the vertical

localization radii are given in scale height units (natural log of

pressure).

Obs type

Horizontal

localization radii

(km; outer, inner)

Vertical localization

radii [ln(p);

outer, inner]

Conventional 700, 200 1.1, 0.55

Radar —, 20 —, 0.55

AERI 700, 200 1.1, 0.55

Doppler lidar 700, 200 0.20, 0.20

Radio wind profiler 700, 200 0.20, 0.20

Surface (PECAN) 700, 200 1.1, 0.55

Rawinsonde (PECAN) 700, 200 1.1, 0.55

TABLE 4. List of experiments.

Expt name Obs assimilated

DENYALL Conventional and radar obs

ALL Conventional, radar obs, and all PECAN obs

listed in Table 1

DENYAERI All obs from ALL except AERIs

DENYLIDAR All obs from ALL except Doppler lidars

DENYWPROF All obs from ALL except radio wind profilers

DENYSONDE All obs fromALL except PECAN rawinsondes

DENYSFC All obs fromALL except PECAN surface obs
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c. Design of the model and data assimilation system

The simulations presented in this study utilize version

3.7.1 of the Advanced Research version of the Weather

Research and Forecasting (WRF) Model (WRF-ARW;

Skamarock et al. 2008). There are 40 ensemblemembers

configured on an outer, continental United States do-

main with 12-km grid spacing (shown in Fig. 1a). The

ensemble members are initialized by downscaling

members 1–20 of both the Global Ensemble Forecast

System (GEFS; Wei et al. 2008) and Short-Range En-

semble Forecast (SREF; Du et al. 2014), following

Johnson andWang (2017) and Johnson et al. (2017). The

native GEFS and SREF systems have horizontal reso-

lutions of approximately 34 and 16km, respectively. The

GEFS and SREF members are also used to update

the lateral boundary conditions on the outer domain.

After DA is completed on the outer domain, an inner,

convection-permitting domain with 4-km grid spacing is

nestedwithin themesoscale grid (Fig. 1b). Both domains

utilize 50 vertical levels on a stretched grid with a 50-hPa

model top. The vertical grid spacing is approximately

200m in the planetary boundary layer increasing to

450m at 500hPa. The physical parameterization schemes

are fixed for each member following Degelia et al. (2018)

and are listed in Table 2.

For DA, we apply an advanced, GSI-based ensemble

Kalmanfilter (EnKF) system (Whitaker et al. 2008,Wang

et al. 2013) extended formeso- and convective scales with

direct radar data assimilation capabilities (Johnson et al.

2015; Wang and Wang 2017). The EnKF improves upon

FIG. 5. Probability forecasts of composite reflectivity of.30 dBZ for (a)–(d) the operational HRRR forecast initialized at 0000UTC 26

Jun, (e)–(h) the DENYALL experiment, and (i)–(l) the ALL experiment. The contours of observed composite reflectivity greater

than 30 dBZ are also overlaid in black. The probabilities for (a)–(d) are calculated as the neighborhood probabilities with a radius of 8 km,

and the probabilities in (e)–(l) are calculated as neighborhood ensemble probabilities with a radius of 8 km. The northern (NCI) and southern

(SCI) initiation episodes are annotated in (k). The black box in (l) indicates the domain used to calculate the FSS shown in Fig. 6.

FIG. 6. Fractions skill score calculated with an 8-km neighbor-

hood over the black box shown in Fig. 5l for a 2.54mmh21 pre-

cipitation threshold. The gray shading represents the approximate

time of CI (between 0215 and 0300 UTC). The values shown in

parentheses signify the FSS when averaged over the entire

forecast period.
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other DA methods such as 3D-Var by sampling the

background error covariance from ensemble forecasts

(Johnson et al. 2015; Houtekamer and Zhang 2016).

Because the 26 June event featured forcing mechanisms

across a spectrum of scales (e.g., shortwave trough, LLJ,

outflow boundary), a multiscaleDAapproach is used like

that described inDegelia et al. (2018). Sensitivity tests are

performed to determine the best covariance localization

radii (Table 3) for each PECAN observation type de-

scribed in the previous section. These settings are

tuned to produce the highest fractions skill score (FSS;

discussed in section 4a) for the nocturnal CI event of

interest. GSI applies an additional observation error

inflation method when multiple observations are as-

similated at the same location during the same DA

cycle. By increasing the observation error and there-

fore reducing the observation information content, this

method accounts for the observation error correlations

when many observations from the same site are as-

similated at the same time (e.g., high-frequency AERI

FIG. 7. Neighborhood ensemble probability forecasts for (a)–(d) ALL, (e)–(h) DENYAERI, (i)–(l) DENYLIDAR, (m)–(p)

DENYWPROF, (q)–(t) DENYSONDE, and (u)–(x) DENYSFC. Each plot is calculated with a radius of 8 km. The dashed black

boxes in (c) indicate the averaging regions for the profiles in Figs. 10–11, below.
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retrievals). See Degelia et al. (2018) for further dis-

cussion on the specific configuration of the GSI-based

EnKF used, including an overview of covariance in-

flation parameters.

d. Experimental design and cycling description

To evaluate the impact of assimilating PECAN ob-

servations on the nocturnal CI forecast, we compare an

experiment with all IOP observations assimilated (ALL)

with a baseline forecast that only assimilates radar and

conventional data (‘‘DENYALLPECAN’’). Addition-

ally, we evaluate the relative forecast impact of each

individual PECAN observation type through data

denial experiments (Table 4). In the data denial

framework, a decrease in forecast skill in a denial ex-

periment indicates a positive impact when assimilating

those specific observations. For the experiments here,

the observations are denied from the assimilation on

both the outer and inner domain.

The cycling description that follows describes the

ALL experiment. On the outer domain, conventional

data are assimilated at 3-h intervals from 0000 to

2100 UTC 25 June.While the assimilation interval is 3 h,

only observations from a 1-h time window (630min

centered on the analysis time) are assimilated on the

outer domain. The conventional data are provided by

the North American Mesoscale Forecast System Data

Assimilation System (NDAS; Rogers et al. 2009) and

include surface, rawinsonde, and ship and buoy obser-

vations (see Fig. 2).We choose to also assimilate PECAN

observations on the outer, mesoscale domain with the

same cycling configuration as the conventional obser-

vations. This is because elevated moist layers, which

occur on the mesoscale and are often associated with

FIG. 8. Ensemble mean forecasts of 850-hPa winds (color fill; m s21) and convergence (contoured in black every1526 s21) for (a) ALL,

(b) DENYAERI, (c) DENYLIDAR, (d)DENYWPROF, (e) DENYSONDE, and (f) DENYSFC valid at 0200UTC 26 Jun. The plotting

domain is shown by the gray box in Fig. 1b. The half barbs represent wind speeds of 2.5m s21, and the full barbs represent wind speeds of

5m s21. Also overlaid in dashed red contours are the heights (every 250mAGL) of the 312-K virtual potential temperature isentrope. The

circled areas indicate the general location of the LLJ terminus corresponding to the CI event of interest, and the dashed brown lines

indicate the approximate location of the synoptic boundary discussed throughout the text.
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nocturnal CI (Wilson et al. 2018), could likely be im-

proved by assimilating the thermodynamic profilers lo-

cated at the FP sites. After 2100 UTC, the inner domain

is initialized within the outer domain and conventional,

PECAN, and level-2 Weather Surveillance Radar-1988

Doppler (WSR-88D) observations are assimilated at

10-min cycling intervals from 2110 UTC 25 June to

0000 UTC 26 June. Because the WSR-88D network

sufficiently covers the domain of interest, we choose not

to assimilate any special radar data collected by PECAN

instruments. The radar observations assimilated in this

study (radar reflectivity factor and radial velocity)

are preprocessed using the Warning Decision Support

System–Integrated Information (WDSS-II; Lakshmanan

et al. 2007). We assimilate the full radar dataset (i.e., no

thinning) from all WSR-88D stations within the PECAN

domain, following the methods described in Johnson

et al. (2015) and Degelia et al. (2018). After the final DA

cycle at 0000 UTC, 7.5-h forecasts are initialized from

members 1–20 of theDAensemble to cover the nocturnal

CI event.

4. Overview of the forecast results when
assimilating the PECAN dataset

Before discussing the forecast results from individual

experiments, we present the consistency ratio (Dowell

et al. 2004) for each experiment in Figs. 3d–f. The con-

sistency ratio acts as an evaluation of the analysis system

by calculating the ratio between the square of the total

ensemble spread in observation space (Wheatley et al.

2014) and the root-mean-square innovation. A value of

1.0 indicates that the ensemble spread fully accounts for

the background ensemble error, while values greater or

less than 1.0 indicate overdispersion or underdispersion,

respectively. During the outer domain DA cycles, the

consistency ratio for thermodynamic variables remains

less than one for each experiment (Figs. 3d–f), indicating

that the ensemble spread is not sufficient to represent

the background ensemble errors. After downscaling

to the inner domain (Figs. 3d–f), the consistency ratios

for the thermodynamic variables are closer to 1.0. For

the wind speed, the ensembles are typically over-

dispersive during both the outer and inner domain as-

similation periods (Fig. 3f). Nevertheless, the ensemble

statistics show no sign of filter divergence and each ex-

periment produces generally similar values. Therefore,

we assume that theDA system performs well enough for

comparisons between the denial experiments.

a. Comparisons with an operational forecast of
nocturnal CI

To first demonstrate the forecast impact of assim-

ilating the PECAN dataset, we compare ALL and

DENYALLPECAN with an operational forecast from

the High-Resolution Rapid Refresh (HRRR; Earth

System Research Laboratory 2016) model initialized at

0000 UTC 26 June. The forecast results from the HRRR

are representative of other real-time simulations the

26 June nocturnal CI event. The experiments are first

compared through raw neighborhood ensemble proba-

bility (NEP; Fig. 5) calculated using an 8-km neighbor-

hood (Schwartz and Sobash 2017). Because the HRRR

FIG. 9. (a) Profiles of temperature (solid lines) and dewpoint

temperature (dashed lines), (b) divergence (1025 s21), and

(c) DzLFC (km) for each data denial experiment valid at 0200 UTC

26 Jun. The ensemblemean profiles are averaged over the northern

black box in Fig. 7c.
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is a deterministic forecast as opposed to ensemble-based,

Figs. 5a–d are presented as neighborhood probabilities

(NP), which are equivalent to the NEP calculated with a

single ensemble member. Additionally, the forecasts are

compared through a time series of FSS (Schwartz et al.

2010) calculated using 1-h accumulated precipitation

data with a threshold of 2.54mmh21 (Fig. 6). The grid-

ded precipitation data are provided by the Multi-Radar

Multi-Sensor (MRMS) project at 1-km resolution be-

fore being interpolated onto our 4-km forecast domain

(Zhang et al. 2016). The FSS is calculated over the box

shown in Fig. 5l to ensure verification only over the

event of interest. By using NEP as the input for calcu-

lating FSS (Schwartz et al. 2010), the score represents an

ensemble verification metric (FSS for the HRRR is

calculated using NP instead).

Even though the nocturnal CI of interest was likely at

least partially driven by the large-scale mechanisms

discussed in section 2, the real-time HRRR simulations

largely fail to capture the event (Figs. 5a–d). Between

0300 and 0400 UTC, the HRRR generates convec-

tion too far north and does not produce a southwest–

northeast-oriented linear event as was observed. The

FSS for the HRRR rapidly decreases from;0.45 to 0.05

(Fig. 6) during this time period. While the simulations

capture fairly well the convection forming in western

Missouri (Figs. 5b,c), the HRRR only generates weak

probabilities in southeastern Nebraska that fail to match

the observed locations or orientation of the nocturnal

CI event.

DENYALLPECAN demonstrates similar issues to

those of the HRRR (Figs. 5e–h), and the FSS for the two

forecasts are similar (Fig. 6). Again, the linear event is

almost entirely missed apart from low probabilities of

two convective events at the extreme ends of the line at

0400 UTC (Fig. 5g). These signals are not maintained

and do not merge into a linear cluster. Eventually,

DENYALLPECAN generates a new linear system, but

it forms farther west than the observed event and is

likely associated with a second CI event that is discussed

in Trier et al. (2017). As the DENYALLPECAN ex-

periment performs poorly and similar to the HRRR

simulations, we assume that it serves as an accurate

baseline to measure the advances that could be made

when assimilating PECAN observations in an opera-

tional setting. We note that the lifting mechanisms dis-

cussed later are captured in both the HRRR and

DENYALLPECAN (not shown). Thus, we hypothesize

that the issues with these forecasts are primarily related

to biases in the elevated instability profile.

Large forecast improvements are made when assimi-

lating the IOP observations in ALL (Figs. 5i–l). The FSS

forALLfirst becomes larger thanDENYALLPECANat

0115 UTC (Fig. 6) due to improvements in resolving the

ongoing surface-based convection in central Kansas.

Shortly before 0300 UTC, ALL generates two distinct CI

episodes along the northern and southern edge of ob-

served linear event, henceforth called NCI (northern CI)

and SCI (southern CI), respectively (Fig. 5k). By

0400UTC,NCI and SCI congeal into a single linear event

that closely matches the position and extent of the ob-

served 30-dBZ contours (Fig. 5k). The linear convection

in ALL then merges with additional convection in west-

ern Missouri to grow into a larger MCS, as was observed.

Although the shape of the later MCS is not precisely

FIG. 10. As in Fig. 9, but averaged over the southern black box in

Fig. 7c. and valid at 0130 UTC 26 Jun.

AUGUST 2019 DEGEL IA ET AL . 2751

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020



captured in ALL, the experiment correctly predicts a

strongly organized MCS along the northern Kansas and

Missouri border by 0600 UTC (Fig. 5l). Figure 6 dem-

onstrates that after CI is simulated at 0300 UTC, ALL

maintains higher skill than DENYALLPECAN through-

out the entirety of the forecast.

b. Data denial experiments

Data denial experiments based on ALL are used to

determine the relative impact of each individual PECAN

observation type on the forecasts of SCI and NCI.

The same NEP plots from Fig. 5 are presented for the

denial experiments in Fig. 7, and the skill scores for each

are shown in Fig. 6. Before discussing the experiments

individually, note that ALL simulates NCI and SCI, as

well as the upscale growth into an MCS, better than any

denial experiment. The FSS is also higher in ALL than

the other experiments shortly after CI (Fig. 6), indicating

that all the individual observation types in the PECAN

dataset have a positive impact on the CI forecast.

Prior to CI, ‘‘DENYAERI’’ performs slightly better

thanALL (Fig. 6) due to it better capturing the decaying

surface-based convection in central Kansas (Fig. 7e).

However, large improvements from the assimilation

of AERI observations appear shortly after 0300 UTC

when ALL correctly begins to generate NCI in Nebraska

(Fig. 7b). DENYAERI does not produce the same

convective cluster until 0330 UTC (not shown) and the

FSS values are reduced from 0.50 in ALL to 0.35

inDENYAERI (Fig. 6).Because the convectionwithinNCI

eventually grows upscale into an MCS, DENYAERI also

forecasts lower NEP values and produces a smaller

MCS than ALL (Figs. 7d,h). These impacts are dem-

onstrated in Fig. 6 as well, as the FSS for DENYAERI

becomes lower than ALL after CI occurs and remains

that way throughout the forecast period (Fig. 6). Thus,

assimilating the AERI observations leads to a positive

forecast impact for the northern cluster of CI and the

later MCS.

Assimilating Doppler lidar observations has a smaller

impact when compared with the other observation

types evaluated in this study. ‘‘DENYLIDAR’’ fore-

casts NCI similar to ALL. The only apparent differences

for NCI are that DENYLIDAR performs slightly bet-

ter at capturing the additional convective events form-

ing along the LLJ terminus in far western Missouri

(Figs. 7b,j). Instead, DENYLIDAR shows a small de-

crease in skill around 0300 UTC (Fig. 6) that is primarily

connected to the reduced probabilities and extent of

SCI. At 0300UTC, themaximumNEP values for SCI are

reduced by ;15% in DENYLIDAR (Figs. 7b,j) com-

pared toALL. However, these differences in FSS do not

FIG. 11. Ensemble mean forecasts of 250m AGL winds (color fill; m s21) and convergence (contoured in black every 1526 s21) for

(a) ALL, (b) DENYAERI, (c) DENYLIDAR, (d) DENYWPROF, (e) DENYSONDE, and (f) DENYSFC valid at 0130 UTC 26 Jun.

The plotting domain is shown by the gray box in Fig. 2d. The half barbs represent wind speeds of 2.5m s21, and the full barbs represent

wind speeds of 5m s21. The plotting domain is zoomed into the outflow boundary produced by the ongoing surface-based cells discussed in

the text. See the text for a description of the circled areas.
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remain large after the convection grows upscale

(Figs. 7d,l).

Similar to the AERI observations, assimilating radio

wind profilers in ALL improves the forecast timing of

NCI (Figs. 7b,n). LikeDENYAERI, the convection that

forms in southeastern Nebraska is not simulated by

‘‘DENYWPROF’’ until 0330 UTC (not shown). How-

ever, DENYWPROF also poorly captures SCI.Without

assimilating the wind profiler data, the NEP values for

SCI are reduced by nearly 40% relative to ALL at

0400 UTC (Figs. 7c,o). These large benefits are main-

tained throughout the upscale growth of the convective

episodes into an MCS (Figs. 7d,p). DENYWPROF

produces a lower FSS than any of the individual denial

experiments after CI (Fig. 6), indicating that the radio

wind profilers lead to the largest improvements com-

pared with the rest of the PECAN dataset.

Assimilating the rawinsonde observations collected

during PECAN produces a large improvement similar

to that from the radio wind profilers. ‘‘DENYSONDE’’

simulates lower probabilities for both NCI and SCI

relative to ALL at 0300 UTC (Figs. 7b,r). Additionally,

DENYSONDE degrades the forecast for SCI at 0400 UTC

(Fig. 7s) as the southern event is almost entirely missed.

As in DENYWPROF, DENYSONDE also produces a

large drop in FSS (Fig. 6) shortly after CI. Although the

FSS for DENYSONDE converges with ALL (Fig. 6)

due to high ensemble probabilities (.90%) within the

MCS, the extent of the MCS in DENYSONDE is still

reduced compared to ALL. Therefore, the large im-

provements from assimilating rawinsonde observa-

tions are partially maintained throughout the later

periods of the forecast.

Assimilating the special PECAN surface observations

has a small benefit similar to those that result from as-

similating the Doppler lidars. At early lead times, sur-

face observations have a small, detrimental impact as

seen by a higher FSS in ‘‘DENYSFC’’ relative toALL at

0215 UTC (Fig. 6). These impacts again result from

differences in how the DENYSFC experiment resolves

the ongoing surface-based convection. Beginning at

0300 UTC (Figs. 7b,v), the positive impacts from as-

similating the PECAN surface observations are mainly

confined to SCI, as DENYSFC shows similar probabil-

ities to DENYLIDAR. Again, these impacts from

assimilating surface observations are small after the

convection grows upscale, as the FSS fromDENYSFC

and ALL converge shortly after 0400 UTC (Fig. 6).

5. Ingredients-based analysis of the observation
impacts

An ingredients-based approach (e.g., Johns and

Doswell 1992) is used to determine which convective

FIG. 12. Ensemble mean forecasts of 700-hPa dewpoint temperature (8C) and wind barbs for (a) ALL, (b) DENYAERI,

(c) DENYLIDAR, (d) DENYWPROF, (e) DENYSONDE, and (f) DENYSFC valid at 0200 UTC 26 Jun. The half barbs represent wind

speeds of 2.5m s21, and the full barbs represent wind speeds of 5m s21. See the text for a description of the red circles.
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components (lift, moisture, instability) most contribute

to the forecast impacts discussed in the previous section.

By performing such an analysis, we determine exactly

why certain observation types aid in the successful

forecast of the 26 June nocturnal CI event.

a. Observation impacts on lifting mechanisms

We focus first on the lifting mechanisms responsi-

ble for the two individual CI clusters. Although the

large-scale ascent mentioned in section 2 likely con-

tributes to destabilization for parcels north of the

synoptic boundary, additional mesoscale mechanisms

are needed to lift the parcels to their LFC. For ex-

ample, the observed sounding taken shortly before

CI (Fig. 1c) shows that the most-unstable parcel, origi-

nating at 873hPa, needed to be lifted to 762hPa to

reach its LFC (;1 km of lift). Analyses suggest that

SCI forms along an outflow boundary produced by the

surface-based convection along the synoptic front (as

hypothesized by Trier et al. 2018; see Fig. 2c). NCI ini-

tiates shortly afterward along the LLJ terminus (see

Fig. 1b).

To first illustrate the large-scale, isentropic ascent, the

heights of the 312-K virtual potential temperature uy
isentrope are plotted (Fig. 8). In each simulation, the

312-K uy level is located at or just above the ground in east-

central Kansas. The height of that same isentrope in-

creases to the north as parcels are lifted isentropically

above the synoptic boundary by the LLJ. Along the

Kansas–Nebraska border andnear the location ofNCI, the

312-K isentrope is lifted to ;1250m AGL in each exper-

iment, demonstrating little observation impacts on the

larger-scale ascent. Figure 8 also shows the horizontalmass

convergence at 850hPa over the LLJ terminus region for

each data denial experiment. Again, no denial experiment

has a large impact on the LLJ or the convergence located

at its terminus.AlthoughDENYWPROFandDENYSONDE

simulate slightly weaker wind speeds just south of the jet

FIG. 13. Differences in analyzed ensemble mean water vapor mixing ratio (g kg21) between ALL and (top) DENYAERI at 700 hPa,

(middle) DENYWPROF at 750 hPa, and (bottom) DENYSONDE at 750 hPa. The plots are valid at (a), (e), (i) 0600, (b), (f), (j) 0900,

(c), (g), (k) 1800, and (d), (h), (l) 2100 UTC 25 Jun. Also overlaid are the locations of the AERIs [in (a)–(d); green dots], radio wind

profilers [in (e)–(h); magenta squares], and PECAN rawinsondes [in (i)–(l); red stars] assimilated in ALL.
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terminus, those differences do not manifest in the con-

vergence field. Because the ascent resulting from hori-

zontal convergence is a function of the integrated

convergence profile, vertical profiles are also shown in

Fig. 9 (NCI) and 10 (SCI). Similar profiles of convergence

are simulated by each experiment along the LLJ terminus

and near NCI (Fig. 9b).

While the PECAN observations have little impact

on forcing mechanisms for NCI, they have a larger

impact on the convergence ahead of the outflow

produced by the earlier surface-based convection

(Figs. 10b and 11; see the first column of Fig. 7 for the

forecasts of this surface-based convection). The wind

speeds and convergence ahead of the cold pool are

maximized at 250m AGL (Fig. 10) and are shown in

Fig. 11. Relative to ALL and DENYAERI (Figs. 11a,b),

wind speeds in the northern section of the cold pool are

over 8ms21 slower in DENYLIDAR, DENYWPROF,

and DENYSFC (Figs. 11c–f). Due to the slower wind

speeds south of this outflow boundary, the convergence

profile along the boundary is weaker in those denial

experiments (Fig. 10b). Although DENYSONDE sim-

ulates slower wind speeds within the cold pool compared

toALL (Fig. 11e), the experiment also enhances thewinds

ahead of the outflow boundary. Thus, DENYSONDE

produces a similar magnitude of convergence as ALL

for SCI (Figs. 11a,e and 10b). These convergence dif-

ferences partially explain why assimilating the Doppler

lidars, radio wind profilers, and surface observations

aid in enhancing SCI. Without the additional ascent

along the outflow boundary, parcels in DENYLIDAR,

DENYWPROF, and DENYSFC need additional time

to reach their LFC.

b. Observation impacts on the thermodynamic
environment

Although assimilating the PECAN observations has

little impact on the convergence near LLJ terminus, the

denial experiments show large sensitivities to the ele-

vated moist layer in the same area (Figs. 9a and 12).

DENYAERI, DENYWPROF, and DENYSONDE,

which all produce a large decrease in forecast skill for

NCI, simulate drier midlevels near the LLJ terminus

compared to ALL (Fig. 9a). The dry air in these three

experiments leads to additional inhibition that needs to

be eroded before parcels can reach their LFC. Another

way of presenting the inhibition is through DzLFC, which
describes the distance between a parcel’s LFC and its

starting height. The DzLFC parameter can be interpreted

as the amount of lifting needed for a parcel to produce

an accelerating updraft. In ALL, parcels originating at

2.25 km AGL near NCI need to be lifted only 900m to

reach their LFC. This value corresponds well with the

sounding in Fig. 1c.Without AERI, radio wind profilers,

or rawinsondes assimilated, these same parcels need to

be lifted between 1200 and 1600m (Fig. 9c). For SCI,

only the assimilation of radio wind profilers or rawin-

sondes significantly modifies the thermodynamic envi-

ronment (Figs. 10a,c). While assimilating both radio

wind profilers and rawinsondes results in moister mid-

levels, the rawinsondes also strongly cool the layer be-

tween 900 and 800 hPa and thus further improve the

FIG. 14. (a) Background ensemble correlations between 750-hPa water vapormixing ratio at FP2 (green dot) and

700-hPa water vapor mixing ratio across the domain, and (b) examples of all AERI profiles assimilated from FP2

(black lines) at 0600 UTC 25 Jun. The green lines indicate the ensemble mean of the background, and the red lines

indicate the ensemble mean of the analysis. The rightmost cluster of lines in (b) represents the temperature (8C),
and the leftmost cluster of lines represents the dewpoint temperature (8C). Also overlaid in (a) are the ensemble

mean analysis increments (background minus analysis; black contours) for water vapor mixing ratio (g kg21). The

dashed contours indicate negative increments, and the solid contours indicate positive increments. Both plots are

taken from the ALL experiment.
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environment for SCI. In ALL, parcels originating at

2 km AGL for SCI need 900m of lift to reach their

LFC, while the same parcels in DENYWPROF or

DENYSONDE need 1300m of lift (Fig. 10c).

The impact on the elevated moist layer is further

shown by the plan view plot in Fig. 12. Relative to ALL,

the Doppler lidar and surface observations have lit-

tle impact on the midlevel dewpoint temperatures

throughout northern Kansas. When denying the AERI,

radio wind profilers, or rawinsondes, however, the

700-hPa dewpoint temperatures are reduced by up-

ward of 68C in some locations. DENYWPROF and

DENYSONDE both modify the elevated moist layer

over a large region that corresponds to both NCI and

SCI (red circles in Figs. 12d,e). Conversely, the obser-

vation impacts from assimilatingAERI observations are

mainly confined to the region near the LLJ terminus

corresponding to NCI (red circle in Fig. 12b).

6. Analysis of observation impacts on the data
assimilation cycles

The previous section indicates that assimilating the

PECAN observations enhances both the elevated moist

layer (AERI, radio wind profilers, and rawinsondes) and

the convergence along an outflow region produced by

earlier, surface-based convection (Doppler lidars, radio

wind profilers, and surface observations). These primary

impacts likely lead to the improved forecast skill in

ALL. However, it is not initially clear why, for example,

assimilating the radio wind profilers modifies the mois-

ture field. Thus, this final section of results explores the

observation impacts throughout the DA cycles to briefly

explain how the assimilation of PECAN observations

impacts these important fields.

a. AERIs

Differences between the 700-hPa water vapor mixing

ratio analyses forALLandDENYAERI are presented in

Figs. 13a–d. InALL,most of the additionalmoisture from

assimilating AERI observations originates on the outer

domain DA cycles (0300–2100 UTC 25 June). At

0600 UTC 25 June, ALL shows increased moisture

above the synoptic boundary compared to DENYAERI.

The additionalmoisture ismaximized at 700hPa (Fig. 13a).

By 0900UTC, themoisture differences along the boundary

inALL reach nearly14gkg21 (Fig. 13b).After 0900UTC,

themidlevel steering flow inALL (see Fig. 12a) advects the

additional moisture northeastward, eventually reaching

the Kansas–Nebraska border by the final DA cycle on

the outer domain (Fig. 13d). The region of additional

moisture in ALL, compared to DENYAERI, corre-

lates well with the location of NCI.

The additional moisture added above the synoptic

boundary appears to be primarily related to negative

increments in the midlevel moisture profile at FP2

(Fig. 14). First, the background ensemble in ALL in-

dicates that the 750-hPa mixing ratio at the top of the

AERI profiles from FP2 is negatively correlated with the

elevated moist layer above the synoptic boundary

(Fig. 14a; correlation calculated against 700-hPa mixing

ratio where the impact is maximized). We hypothesize

that this anticorrelation in the background is due to the

ensemble indicating a strong moisture gradient along the

frontal boundary, such that drier members at FP2 are

FIG. 15. Ensemble mean analysis increments (analysis minus

background) of the 750-hPa zonal wind (m s21) for (a) ALL,

(b) DENYWPROF, and (c) DENYSONDE valid at 1800 UTC 25

Jun. The black contours indicate the ensemblemean 750-hPawater

vapor mixing ratio (g kg21) for each respective experiment. Also

overlaid in (a) are the ensemble mean innovation values (obser-

vation minus background; dots) for the radio wind profiler obser-

vations closest to 750 hPa.
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moister above the front. Next, the midlevels in the back-

ground are also 108C too moist compared to correspond-

ing AERI retrievals at FP2 (Fig. 14b). Therefore, while

the AERI observations at FP2 aid in drying the midlevels

in southwestern Kansas, the background covariance struc-

ture allows the same profiles to strongly moisten the mid-

levels above the synoptic boundary (Fig. 14a). This finding

illustrates the primary advantage of using an ensemble-

based DA method like the EnKF, as it can generate flow-

dependent background error covariances.

b. Radio wind profilers and rawinsondes

As discussed earlier, assimilating the radio wind pro-

filers in ALL results in additional moisture at 750hPa

throughout a large region of northeastern Kansas

(Figs. 13e–h). This moisture primarily manifests during

the final outer domain DA cycles between 1800 and

2100 UTC 25 June (Fig. 13h). However, unlike the as-

similation of AERI observations, which directly add

moisture, the additional moisture from assimilating ra-

dio wind profilers results from enhancements to the

moisture advection field (Fig. 15). In northwestern

Kansas, the 1800 UTCwind profiler observations at FP3

and FP5 produce innovations of 12–4ms21 in the zonal

wind, which in turn, lead to a large, positive increment in

ALL (Fig. 15a). Because most of the midlevel moisture

is also located in northwestern Kansas (Fig. 15), the

enhancement of the zonal wind in ALL increases the

moisture advection into central and eastern Kansas. With-

out the assimilation of thewindprofilers inDENYWPROF

(Fig. 15b), the zonal wind decreases during the 1800

UTC cycle throughout much of western Kansas. Thus,

DENYWPROF simulates weaker moisture advection

that eventually leads to the large differences in the

750-hPa moisture field at 2100 UTC (Fig. 13h).

As with the impact from assimilating radio wind pro-

filers, the assimilation of rawinsonde data also leads to

modifications to the midlevel zonal wind fields during the

1800 UTC cycle (Figs. 13k and 15c). However, only one

rawinsonde was launched during this cycle while many

wind profiles were collected throughout the domain (see

Fig. 2b). The single rawinsonde assimilated at 1800 UTC

fromFP1 shows a large, negative innovation (;23ms21)

between the observed and simulated zonal wind at

700hPa (Fig. 16b). Because both the innovation at FP1

and correlations with the 750-hPawind inwesternKansas

are negative (Fig. 16a), we deduce that assimilating the

FP1 rawinsonde at 1800 UTC is at least partially re-

sponsible for the positive increment in the zonal wind

shown in Fig. 15a. Therefore, in DENYSONDE, a neg-

ative increment in the zonal wind occurs in southwestern

Kansas at 1800UTC (Fig. 15c) that weakens themoisture

advection into central Kansas. As in DENYWPROF,

the weaker moisture advection then leads to reduced mid-

levelmoistureduring the laterDAcycles inDENYSONDE

compared to ALL (Figs. 13k,l).

c. Doppler lidars and surface observations

To determine why assimilating Doppler lidars or

surface observations enhances the wind speeds within

the outflow boundary, we analyze the common elements

that contribute to stronger cold pools. We find little

sensitivity to either the precipitation within the surface-

based cells or the relative humidity profile below cloud

base (not shown). Instead, when these observation types

are assimilated near the ongoing surface-based convection,

FIG. 16. (a) Background ensemble correlations between 700-hPa zonal wind at FP1 (red star) and 750-hPa zonal

wind across the domain, and (b) the zonal wind profile assimilated from the FP1 rawinsonde at 1800 UTC 25 Jun.

The green lines indicate the ensemblemean of the background, and the red lines indicate the ensemblemean of the

analysis. Also overlaid in (a) are the ensemble mean analysis increments (background minus analysis; black con-

tours) for zonal wind (m s21). The dashed contours indicate negative increments, and the solid contours indicate

positive increments. Both plots are taken from the ALL experiment.
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convective-scale regions along the borders of the

storms are moistened by the final assimilation cycle

(Figs. 17b,h). This moisture impact is maximized at

600 hPa (Fig. 18). Assimilating wind profilers and ra-

winsonde observations produces similar effects near the

ongoing convection (Figs. 17d,f), though additional

moisture is already present due to the effects discussed

previously. The additional moisture from assimilating

Doppler lidar and surface observations does not exist

prior to the development of the surface-based convec-

tion (Figs. 17a,g), indicating that the impacts are related

to convective-scaleDA. This impact extends throughout

much of the midtroposphere, with DENYLIDAR and

DENYSFC simulating decreased dewpoint temper-

atures by an average of 28–48C between 500 and

800 hPa (Fig. 18). We hypothesize that the additional,

convective-scale moisture added by these observations

enhances the ongoing surface-based convection and

later produces the stronger outflow seen only in ALL

and DENYAERI (Fig. 9). Additionally, this increased

moisture would likely reduce the impact of entrain-

ment effects that could act to dissipate the ongoing

convection.

7. Discussion and future work

By assimilating remote sensing profilers, high-

frequency rawinsondes, and surface observations col-

lected on 26 June, we find large improvements over a

baseline experiment in terms of location, orientation,

and timing of a nocturnal CI forecast. The most skillful

forecast results occur when assimilating every PECAN

dataset used in this study, thus indicating that each ob-

servation type plays a positive role in improving the CI

forecast. Our results also suggest that the linear CI ep-

isode was initiated by two separate forcing mechanisms.

NCI was initiated largely by the LLJ, while SCI formed

along an outflow boundary produced by earlier, surface-

based convection.

We conduct experiments within a data denial frame-

work to evaluate the relative impact of assimilating each

PECAN observation type within the full dataset. As-

similating AERI, radio wind profiler, and rawinsonde

data produces the largest and most sustained impact due

to enhancing the elevatedmoist layer in the region of CI.

The radio wind profilers and rawinsondes affect both

NCI and SCI by strengthening the moisture advection

across northern Kansas. Assimilating AERI observa-

tions directly adds moisture above the synoptic bound-

ary that is then advected into the NCI. This study is

among the first to assimilate real AERI observations

and demonstrates that high-frequency profiles of tem-

perature and water vapor can improve short-term fore-

casts of convection. Additionally, the special rawinsondes

assimilated here were launched more frequently and at

nonstandard times relative to the operational network,

thus providing further evidence for the value of assimi-

lating high-frequency profiles.

The largest improvements result during DA cycling on

the outer, mesoscale domain, indicating that assimilating

profiler data can lead to forecast improvements even

when not assimilating the data on a convection-

permitting grid. However, additional improvements

are found when assimilating the PECAN data at 4 km.

When assimilating surface and Doppler lidar observa-

tions, the preexisting, surface-based convection produces

FIG. 17. As in Fig. 13, but for differences in ensemble mean

water vapor mixing ratio (g kg21) at 650 hPa between ALL and

(a),(b)DENYLIDAR; (c),(d)DENYWPROF; (e),(f)DENYSONDE;

and (g),(h)DENYSFC.The plots are valid at (left) 2230UTC 25 Jun

and (right) 0000 UTC 26 Jun. Also overlaid are 15-dBZ contours

of composite reflectivity from the ensemble mean of ALL. The

red X in (b), (d), (f), and (h) indicates the location of the profile

in Fig. 18.
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a stronger outflow that enhances the ascent for the SCI.

We hypothesize that the enhanced outflow is related

to increased moisture near the analyzed convec-

tion that then enhances the ongoing storms during DA

on the inner domain. Similar enhancements are also

seen when assimilating the radio wind profiler obser-

vations. However, the improvements from assim-

ilating surface and Doppler lidar observations diminish

after the two simulated CI clusters merge into a

larger MCS.

Still, various aspects of the results should be further

explored. First, the location of each observation likely

plays an important role on its impact. For example, the

radio wind profilers assimilated here are possibly more

impactful than Doppler lidars due to the additional ra-

dio wind profiler at FP4 (far northwestern Kansas site in

Fig. 15a). An additional Doppler lidar at the same lo-

cation could allow for a similar increment for the zonal

wind in northern Kansas. However, the higher maxi-

mum height of radio wind profilers (upward of 10 km

AGL) also likely aids in the larger impact compared to

Doppler lidars. Next, while we find an enhanced outflow

boundary when assimilating Doppler lidar and surface

observations, the impacts of convective-scale DA near

ongoing convection is an area of research that has yet to

be fully explored. Ensemble correlations near ongoing

thunderstorms could be considered spurious due to the

chaotic nature of convection. Thus, the impacts of as-

similating the PECAN observations on the strength of

the outflow boundary should be further studied.

For similar cases that show large thermodynamic

errors, we expect that assimilating profiler observa-

tions can lead to improvements for short-term forecasts

of CI. However, the strong forcing mechanisms for this

event are captured well by each experiment, such that

only the thermodynamic enhancements are needed for a

FIG. 18. Ensemble mean profiles of temperature (solid lines) and dewpoint temperature

(dashed lines) taken from the red X in Fig. 17 and valid at 0000 UTC 26 Jun. The sounding is

averaged over a neighborhood with a radius of two grid points (8 km).
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successful CI forecast. It is unclear whether assimilating

such data could improve convergence mechanisms for

other CI events, or if the observation impacts would be

as large when the mechanisms are not well captured. As

nocturnal convection can be initiated by many other

features such as atmospheric bores or internal gravity

waves, we plan to conduct a systematic evaluation of the

impact of assimilating PECAN field observations on

forecasts of nocturnal CI. To facilitate this work, a sta-

tistical method is also being developed to systematically

quantify timing, location, and orientation errors for CI.

By increasing our sample size using many CI cases from

PECAN, we are verifying both the relative impact of

each instrument type as well as the convective-scale

impacts seen near the ongoing outflow boundary.
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APPENDIX

Further Details and Preprocessing of the PECAN
Dataset

The AERI instrument observes a ‘‘spectrally re-

solved downwelling radiance emitted by the atmosphere

in the infrared portion of the electromagnetic spec-

trum’’ before retrieving a thermodynamic profile using

an optimal-estimation retrieval technique [see Turner

and Löhnert (2014, p. 752) for more details]. Because

the retrieval accuracy quickly decreases with height and

above cloudy layers, no observations above either 3 km

AGL or cloud base are assimilated here (D. Turner

2016, personal communication). Additionally, to reduce

both the correlated and uncorrelated observation

errors, a ‘‘superob’’ method (e.g., Berger 2004) is ap-

plied to each retrieval wherein the observations are

averaged over a 10-hPa depth. For all observation types,

we only apply the superob method to the portions of the

profile for which the native observation spacing is less

than the superob depth. We do not apply any temporal

averaging or thinning techniques to the data, as one

large advantage of the AERI is its ability to capture

rapid changes in moisture and stability (Blumberg

et al. 2017).

The vertical profiles from each wind profiler site

are provided as 30-min averages. At FP4, FP5, and

MP4, the wind profiles are calculated using the im-

proved moments algorithm (Morse et al. 2002), which

provides a confidence measure for each observation.

We reject any data with a confidence below 0.5 as

recommended by the data providers. At FP3, any

449-MHz wind profiler data with a signal-to-noise ratio

of less than 26 dB are rejected (W. Brown 2018, per-

sonal communication). Furthermore, at FP4 and FP5,

the 915-MHz profilers operate in both a ‘‘low’’ mode

that features 180-m vertical sampling up to 4 km AGL

and a ‘‘high’’ mode that features 360-m vertical sam-

pling up to 12 kmAGL.We choose to form a composite

profile at these sites by rejecting any high-mode data

below 4km AGL. The superob method with a depth of

100m (similar to a depth of 10 hPa in the boundary

layer) is applied to these observations, because no

pressure data are provided.

To remove the impacts of turbulence not resolved by

the 4-km model and to be consistent with the averaging

window for radio wind profilers, Doppler lidar obser-

vations are temporally averaged into 30-min profiles.

Data below 100m or above 3000m AGL are not as-

similated because of quality issues (D. Turner and P. Klein

2018, personal communications). We also perform gross

checks to remove any erroneous databased on the root-

mean-square difference between the observed radial ve-

locity and its fitted values. Again, the wind observations

are superobbed to a depth of 100m.

The PECAN surface observations (temperature, hu-

midity, wind, and pressure) are thinned to 5-min in-

tervals due to the high frequency of the data. Other than

gross checks for valid data, no other quality-control

methods are applied to the surface observations before

the assimilation.

The rawinsonde data are provided with quality-control

markers following the methods described in Loehrer

et al. (1996). Only the levels at which all data aremarked

as good are assimilated. The rawinsonde data are also

superob-ed to a depth of 10 hPa to be consistent with the

other PECAN observations.

2760 MONTHLY WEATHER REV IEW VOLUME 147

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020

doi:10.5065/D6RX99HX
http://weather.ou.edu/~map/index.html
http://weather.ou.edu/~map/index.html


REFERENCES

Benjamin, S.G., B. E. Schwartz, E. J. Szoke, and S. E.Koch, 2004: The

value of wind profiler data in U.S. weather forecasting. Bull.

Amer. Meteor. Soc., 85, 1871–1886, https://doi.org/10.1175/

BAMS-85-12-1871.

——, B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz,

and T. W. Schlatter, 2010: Relative short-range forecast im-

pact from aircraft, profiler, radiosonde, VAD, GPS-PW,

METAR, and mesonet observations via the RUC hourly as-

similation cycle. Mon. Wea. Rev., 138, 1319–1343, https://

doi.org/10.1175/2009MWR3097.1.

——, and Coauthors, 2016: A North American hourly assimilation

andmodel forecast cycle: TheRapidRefresh.Mon.Wea. Rev.,

144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1.

Berger, H., 2004: Satellite wind superobbing. EUMETSAT Satel-

lite Application Facility on Numerical Weather Prediction

(NWP SAF) Doc. NWPSAF-MO-VS-016, 33 pp., https://

www.ssec.wisc.edu/;howardb/Papers/superob_nwpsaf_final.pdf.

Blumberg,W. G., T. J. Wagner, D. D. Turner, and J. Correia, 2017:

Quantifying the accuracy and uncertainty of diurnal thermo-

dynamic profiles and convection indices derived from the

Atmospheric Emitted Radiance Interferometer. J. Appl.

Meteor. Climatol., 56, 2747–2766, https://doi.org/10.1175/

JAMC-D-17-0036.1.

Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea.

Rev., 96, 833–850, https://doi.org/10.1175/1520-0493(1968)

096,0833:COTLLJ.2.0.CO;2.

Bormann, N., A. J. Geer, and P. Bauer, 2011: Estimates of

observation-error characteristics in clear and cloudy regions

for microwave imager radiances from numerical prediction

models. Quart. J. Roy. Meteor. Soc., 137, 2014–2023, https://

doi.org/10.1002/qj.833.

Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D6GM85DZ.

Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019:

Impacts of targeted AERI and Doppler lidar wind retrievals

on short-term forecasts of the initiation and early evolution of

thunderstorms. Mon. Wea. Rev., 147, 1149–1170, https://doi.org/

10.1175/MWR-D-18-0351.1.

Corfidi, S. F., S. J. Corfidi, and D. M. Schultz, 2008: Elevated

convection and castellanus: Ambiguities, significance, and

questions. Wea. Forecasting, 23, 1280–1303, https://doi.org/

10.1175/2008WAF2222118.1.

Davis, C. A., B. Brown, and R. Bullock, 2006: Object-based veri-

fication of precipitation forecasts. Part I: Methodology and

application to mesoscale rain areas. Mon. Wea. Rev., 134,

1772–1784, https://doi.org/10.1175/MWR3145.1.

Degelia, S. K., X. Wang, D. J. Stensrud, and A. Johnson, 2018:

Understanding the impact of radar and in situ observations on

the prediction of a nocturnal convection initiation event on

25 June 2013 using an ensemble-based multiscale data assim-

ilation system. Mon. Wea. Rev., 146, 1837–1859, https://

doi.org/10.1175/MWR-D-17-0128.1.

Delgado, R., and K. Vermeesch, 2016: FP2 UMBC surface weather

station data, version 1.0. UCAR/NCAR–Earth Observing Labo-

ratory, accessed 1 June 2018, https://doi.org/10.5065/D6SJ1HSG.

Dowell, D. C., F. Zhang, L. J. Wicker, C. Synder, and N. A. Crook,

2004: Wind and temperature retrievals in the 17 May 1981

Arcadia, Oklahoma, supercell: Ensemble Kalman filter ex-

periments. Mon. Wea. Rev., 132, 1982–2005, https://doi.org/

10.1175/1520-0493(2004)132,1982:WATRIT.2.0.CO;2.

Du, J., and Coauthors, 2014: NCEP regional ensemble update: Current

systems and planned storm-scale ensembles. 26th Conf. on

Weather Analysis and Forecasting/22nd Conf. on Numerical

WeatherPrediction,Atlanta,GA,Amer.Meteor. Soc., J1.4, https://

ams.confex.com/ams/94Annual/webprogram/Paper239030.html.

Earth SystemResearchLaboratory, 2016: TheHigh-ResolutionRapid

Refresh (HRRR). NOAA Earth System Research Laboratory,

accessed 15 February 2017, https://rapidrefresh.noaa.gov/hrrr/.

Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren,

G. Gayno, and J. Tarpley, 2003: Implementation of Noah land

surface model advances in the National Centers for Environ-

mental Prediction operational mesoscale EtaModel. J. Geophys.

Res., 108, 8851–8867, https://doi.org/10.1029/2002JD003296.

Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data

assimilation. Quart. J. Roy. Meteor. Soc., 137, 2024–2037,

https://doi.org/10.1002/qj.830.

Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Con-

vection At Night (PECAN) field project. Bull. Amer. Meteor.

Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1.

Grant, B. N., 1995: Elevated cold-sector severe thunderstorms: A

preliminary study. Natl. Wea. Dig., 19, 25–31.

Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware

stochastic convective parameterization for weather and air

quality modeling. Atmos. Chem. Phys., 13, 23 845–23 893,

https://doi.org/10.5194/acpd-13-23845-2013.

Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal con-

vection.Bull. Amer. Meteor. Soc., 100, 1103–1121, https://doi.org/

10.1175/BAMS-D-17-0250.1.

Hanesiak, J., and D. Turner, 2016a: FP3 University of Manitoba

Doppler lidar wind profile data, version 1.0. UCAR/NCAR–

Earth Observing Laboratory, accessed 1 June 2018, https://

doi.org/10.5065/D60863P5.

——, and ——, 2016b: FP6 University of Manitoba Doppler lidar

VAD winds data, version 2.0. UCAR/NCAR–Earth Observ-

ing Laboratory, accessed 1 June 2018, https://doi.org/10.5065/

D64F1NTN.

Hartung, D. C., J. A. Otkin, R. A. Petersen, D. D. Turner, and

W. F. Feltz, 2011: Assimilation of surface-based boundary

layer profiler observations during a cool-season weather event

using an observing system simulation experiment. Part II:

Forecast assessment. Mon. Wea. Rev., 139, 2327–2346, https://

doi.org/10.1175/2011MWR3623.1.

Hitchcock, S. M., M. C. Coniglio, and K. H. Knopfmeier, 2016:

Impact of MPEX observations on ensemble analyses and

forecasts of the 31May 2013 convective event overOklahoma.

Mon. Wea. Rev., 144, 2889–2913, https://doi.org/10.1175/

MWR-D-15-0344.1.

Holdridge, D., and D. Turner, 2015: FP6 Hesston, KS radiosonde

data, version 1.0. UCAR/NCAR–Earth Observing Labora-

tory, accessed 1 June 2018, https://doi.org/10.5065/D6765CD0.

Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class mi-

crophysics scheme (WSM6). J. KoreanMeteor. Soc., 42, 129–151.

Horel, J., and Coauthors, 2002: Mesowest: Cooperative Mesonets

in the western United States. Bull. Amer. Meteor. Soc., 83,

211–225, https://doi.org/10.1175/1520-0477(2002)083,0211:

MCMITW.2.3.CO;2.

Horgan,K.L.,D.M.Schultz, J.E.Hales, S. F.Corfidi, andR.H. Johns,

2007: A five-year climatology of elevated severe convective

storms in the United States east of the Rocky Mountains. Wea.

Forecasting, 22, 1031–1044, https://doi.org/10.1175/WAF1032.1.

Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble

Kalmanfilter for atmospheric data assimilation.Mon.Wea.Rev.,

144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1.

AUGUST 2019 DEGEL IA ET AL . 2761

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/BAMS-85-12-1871
https://doi.org/10.1175/BAMS-85-12-1871
https://doi.org/10.1175/2009MWR3097.1
https://doi.org/10.1175/2009MWR3097.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://www.ssec.wisc.edu/~howardb/Papers/superob_nwpsaf_final.pdf
https://www.ssec.wisc.edu/~howardb/Papers/superob_nwpsaf_final.pdf
https://doi.org/10.1175/JAMC-D-17-0036.1
https://doi.org/10.1175/JAMC-D-17-0036.1
https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2
https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2
https://doi.org/10.1002/qj.833
https://doi.org/10.1002/qj.833
https://doi.org/10.5065/D6GM85DZ
https://doi.org/10.1175/MWR-D-18-0351.1
https://doi.org/10.1175/MWR-D-18-0351.1
https://doi.org/10.1175/2008WAF2222118.1
https://doi.org/10.1175/2008WAF2222118.1
https://doi.org/10.1175/MWR3145.1
https://doi.org/10.1175/MWR-D-17-0128.1
https://doi.org/10.1175/MWR-D-17-0128.1
https://doi.org/10.5065/D6SJ1HSG
https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
https://ams.confex.com/ams/94Annual/webprogram/Paper239030.html
https://ams.confex.com/ams/94Annual/webprogram/Paper239030.html
https://rapidrefresh.noaa.gov/hrrr/
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1002/qj.830
https://doi.org/10.1175/BAMS-D-15-00257.1
https://doi.org/10.5194/acpd-13-23845-2013
https://doi.org/10.1175/BAMS-D-17-0250.1
https://doi.org/10.1175/BAMS-D-17-0250.1
https://doi.org/10.5065/D60863P5
https://doi.org/10.5065/D60863P5
https://doi.org/10.5065/D64F1NTN
https://doi.org/10.5065/D64F1NTN
https://doi.org/10.1175/2011MWR3623.1
https://doi.org/10.1175/2011MWR3623.1
https://doi.org/10.1175/MWR-D-15-0344.1
https://doi.org/10.1175/MWR-D-15-0344.1
https://doi.org/10.5065/D6765CD0
https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2
https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2
https://doi.org/10.1175/WAF1032.1
https://doi.org/10.1175/MWR-D-15-0440.1


Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A.

Clough, and W. D. Collins, 2008: Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative

transfermodels. J. Geophys. Res., 113, D13103, https://doi.org/

10.1029/2008JD009944.

Johns, R. H., and C. A. Doswell, 1992: Severe local storms fore-

casting. Wea. Forecasting, 7, 588–612, https://doi.org/10.1175/

1520-0434(1992)007,0588:SLSF.2.0.CO;2.

Johnson, A., and X. Wang, 2017: Design and implementation of a

GSI-based convection-allowing ensemble data assimilation

and forecast system for the PECAN field experiment. Part I:

Optimal configurations for nocturnal convection prediction

using retrospective cases. Wea. Forecasting, 32, 289–315,

https://doi.org/10.1175/WAF-D-16-0102.1.

——, ——, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A

comparison of multiscale GSI-based EnKF and 3DVar data

assimilation using radar and conventional observations for

midlatitude convective-scale precipitation forecasts. Mon.

Wea. Rev., 143, 3087–3108, https://doi.org/10.1175/MWR-D-

14-00345.1.

——,——, and S. K. Degelia, 2017: Design and implementation of a

GSI-based convection-allowing ensemble data assimilation and

forecast system for the PECAN field experiment. Part II:

Overview and evaluation of real-time system.Wea. Forecasting,

32, 1227–1251, https://doi.org/10.1175/WAF-D-16-0201.1.

——, ——, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of

forecasts of a convectively generated bore using an intensively

observed case study from PECAN. Mon. Wea. Rev., 146,

3097–3122, https://doi.org/10.1175/MWR-D-18-0059.1.

Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki,

Y. Honda, and Y. Wakazuki, 2007: An assimilation and

forecasting experiment of the Nerima Heavy Rainfall with a

Cloud-Resolving Nonhydrostatic 4-Dimensional Variational

Data Assimilation System. J. Meteor. Soc. Japan, 85, 255–276,

https://doi.org/10.2151/jmsj.85.255.

——, H. Iwai, H. Seko, Y. Shoji, K. Saito, S. Ishii, and K. Mizutani,

2014: Cloud-resolving 4D-Var assimilation of Doppler wind

lidar data on a meso-gamma-scale convective system. Mon.

Wea. Rev., 142, 4484–4498, https://doi.org/10.1175/MWR-D-

13-00362.1.

Klein, P., D. Turner, E. Smith, and J. Gebauer, 2016: Mobile PISA

1 OU/NSSL CLAMPS radiosonde data, version 1.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D6416VDH.

Knupp, K., and R.Wade, 2016: MP2UAHMIPS 915MHz profiler

NIMA-processed consensus wind and moments data, version

1.0. UCAR/NCAR–Earth Observing Laboratory, accessed

1 June 2018, https://doi.org/10.5065/D6B27SJ2.

Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The

Warning Decision Support System-Integrated Information.

Wea. Forecasting, 22, 596–612, https://doi.org/10.1175/

WAF1009.1.

Lin, Y., R. D. Farley, and H. D. Orville, 1983: Bulk parameteri-

zation of the snow field in a cloud model. J. Climate Appl.

Meteor., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)

022,1065:BPOTSF.2.0.CO;2.

Loehrer, S. M., T. A. Edmands, and J. A. Moore, 1996: TOGA

COARE upper-air sounding data archive: Development and

quality control procedures. Bull. Amer. Meteor. Soc., 77,

2651–2672, https://doi.org/10.1175/1520-0477(1996)077,2651:

TCUASD.2.0.CO;2.

Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology

in Midlatitudes. Wiley-Blackwell, 430 pp.

Menzies, R. T., and R. M. Hardesty, 1989: Coherent Doppler lidar

for measurements of wind fields. Proc. IEEE, 77, 449–462,

https://doi.org/10.1109/5.24130.

Minamide, M., and F. Zhang, 2017: Adaptive observation error

inflation for assimilating all-sky satellite radiance. Mon. Wea.

Rev., 145, 1063–1081, https://doi.org/10.1175/MWR-D-16-0257.1.

Morse, C. S., R. K.Goodrich, and L. B. Cornman, 2002: TheNIMA

method for improved moment estimation from Doppler

spectra. J. Atmos. Oceanic Technol., 19, 274–295, https://

doi.org/10.1175/1520-0426-19.3.274.

Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada

level-3 model: Its numerical stability and application to a re-

gional prediction of advection fog.Bound.-LayerMeteor., 119,

397–407, https://doi.org/10.1007/s10546-005-9030-8.

National Research Council, 2009: Observing Weather and Climate

from the Ground Up: A Nationwide Network of Networks.

National Academies Press, 250 pp., https://doi.org/10.17226/

12540.

Newsom, R. K., W. A. Brewer, J. M. Wilczak, D. E. Wolfe, S. P.

Oncley, and J. K. Lundquist, 2017: Validating precision esti-

mates in horizontal wind measurements from a Doppler lidar.

Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/

amt-10-1229-2017.

Otkin, J. A., D. C. Hartung, D. D. Turner, R. A. Petersen, W. F.

Feltz, and E. Janzon, 2011: Assimilation of surface-based

boundary layer profiler observations during a cool-season

weather event using an observing system simulation ex-

periment. Part I: Analysis impact. Mon. Wea. Rev., 139,

2309–2326, https://doi.org/10.1175/2011MWR3622.1.

Peters, J. M., E. R. Nielsen, M. D. Parker, S. M. Hitchcock, and

R. S. Schumacher, 2017: The impact of low-level moisture

errors on model forecasts of an MCS observed during

PECAN. Mon. Wea. Rev., 145, 3599–3624, https://doi.org/

10.1175/MWR-D-16-0296.1.

Privé, N. C., R. M. Errico, and K.-S. Tai, 2014: The impacts of in-

creased frequency of rawinsonde observations on forecast skill

investigated with an observing system simulation experiment.

Mon. Wea. Rev., 142, 1823–1834, https://doi.org/10.1175/

MWR-D-13-00237.1.

Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of

nocturnal convection initiation over the central and southern

Great Plains during thewarm season.Mon.Wea. Rev., 145, 1615–

1639, https://doi.org/10.1175/MWR-D-16-0340.1.

Rogers, E., and Coauthors, 2009: The NCEP North American

Mesoscale Modeling System: Recent changes and future

plans. 23rd Conf. on Weather Analysis and Forecasting/19th

Conf. on Numerical Weather Prediction, Omaha, NE, Amer.

Meteor. Soc., 2A.4, https://ams.confex.com/ams/23WAF19NWP/

techprogram/paper_154114.htm.

Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic

forecasts from convection-allowing ensembles using neigh-

borhood approaches: A review and recommendations. Mon.

Wea. Rev., 145, 3397–3418, https://doi.org/10.1175/MWR-D-

16-0400.1.

——, and Coauthors, 2010: Toward improved convection-

allowing ensembles: Model physics sensitivities and

optimizing probabilistic guidance with small ensemble mem-

bership. Wea. Forecasting, 25, 263–280, https://doi.org/10.1175/

2009WAF2222267.1.

Shao, H., and Coauthors, 2016: Bridging research to operations

transitions: Status and plans of community GSI. Bull. Amer.

Meteor. Soc., 97, 1427–1440, https://doi.org/10.1175/BAMS-D-

13-00245.1.

2762 MONTHLY WEATHER REV IEW VOLUME 147

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/WAF-D-16-0102.1
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1175/WAF-D-16-0201.1
https://doi.org/10.1175/MWR-D-18-0059.1
https://doi.org/10.2151/jmsj.85.255
https://doi.org/10.1175/MWR-D-13-00362.1
https://doi.org/10.1175/MWR-D-13-00362.1
https://doi.org/10.5065/D6416VDH
https://doi.org/10.5065/D6B27SJ2
https://doi.org/10.1175/WAF1009.1
https://doi.org/10.1175/WAF1009.1
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<2651:TCUASD>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<2651:TCUASD>2.0.CO;2
https://doi.org/10.1109/5.24130
https://doi.org/10.1175/MWR-D-16-0257.1
https://doi.org/10.1175/1520-0426-19.3.274
https://doi.org/10.1175/1520-0426-19.3.274
https://doi.org/10.1007/s10546-005-9030-8
https://doi.org/10.17226/12540
https://doi.org/10.17226/12540
https://doi.org/10.5194/amt-10-1229-2017
https://doi.org/10.5194/amt-10-1229-2017
https://doi.org/10.1175/2011MWR3622.1
https://doi.org/10.1175/MWR-D-16-0296.1
https://doi.org/10.1175/MWR-D-16-0296.1
https://doi.org/10.1175/MWR-D-13-00237.1
https://doi.org/10.1175/MWR-D-13-00237.1
https://doi.org/10.1175/MWR-D-16-0340.1
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/2009WAF2222267.1
https://doi.org/10.1175/2009WAF2222267.1
https://doi.org/10.1175/BAMS-D-13-00245.1
https://doi.org/10.1175/BAMS-D-13-00245.1


Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory

for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73,

3037–3057, https://doi.org/10.1175/JAS-D-15-0307.1.

Shin, H., and S.-Y. Hong, 2011: Intercomparison of planetary

boundary-layer parameterizations in the WRF Model for a

single day from CASES-99. Bound.-Layer Meteor., 139, 261–

281, https://doi.org/10.1007/s10546-010-9583-z.

Sivaraman, C., L. Ma, L. Riihimaki, P. Muradyan, R. Coulter,

S. Collis, and S. Xie, 1990: Radar wind profiler

(915RWPPRECIPCON; updated hourly) from Southern

Great Plains (SGP) central facility (C1), NW radar wind

profiler site (I10), NE radar wind profiler site (8). Atmospheric

RadiationMeasurement (ARM) climate research facility data

archive, accessed 1 June 2018, https://doi.org/10.5439/1025127.

Skamarock, W. C., and Coauthors, 2008: A description of the Ad-

vanced Research WRF Version 3. NCAR Tech. Note NCAR/

TN-4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

Smith, E. N., J. A. Gibbs, E. Fedorovich, and T. Bonin, 2015: WRF

Model study of the Great Plains low-level jet: Effects of grid

spacing and boundary layer parameterizations. 22nd Symp.

on Boundary Layers and Turbulence, Salt Lake City, UT,

Amer. Meteor. Soc., 14B.1, https://ams.confex.com/ams/

32AgF22BLT3BG/webprogram/Paper294866.html.

Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor

(MRMS) severe weather and aviation products: Initial oper-

ating capabilities. Bull. Amer. Meteor. Soc., 97, 1617–1630,

https://doi.org/10.1175/BAMS-D-14-00173.1.

Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mes-

onet observationswith theEnKF to improve ensemble forecasts

of convection initiation on 29 May 2012. Mon. Wea. Rev., 143,

3700–3725, https://doi.org/10.1175/MWR-D-14-00126.1.

Stelten, S., and W. A. Gallus, 2017: Pristine nocturnal convective

initiation: A climatology and preliminary examination of

predictability. Wea. Forecasting, 32, 1613–1635, https://

doi.org/10.1175/WAF-D-16-0222.1.

Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009:

Evaluation of the Weather Research and Forecasting Model

on forecasting low-level jets: Implications for wind energy.

Wind Energy, 12, 81–90, https://doi.org/10.1002/we.288.

Sun, J., and S. B. Trier, 2018: Physical processes leading to elevated

convection initiation during 25–26 June PECAN: Convective-

scale reanalysis based on a radar data assimilation system. Spe-

cial Symp. on Plains Elevated Convection At Night (PECAN),

Austin, TX, Amer. Meteor. Soc., 1.6, https://ams.confex.com/

ams/98Annual/webprogram/Paper336167.html.

Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle

of precipitation from continental radar mosaics and numerical

weather prediction models. Part I: Methodology and seasonal

comparison. Mon. Wea. Rev., 138, 3084–3106, https://doi.org/

10.1175/2010MWR3125.1.

Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and

surface processes in the Goddard Cumulus Ensemble (GCE)

model. Meteor. Atmos. Phys., 82, 97–137, https://doi.org/

10.1007/s00703-001-0594-7.

Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental

conditions preceding the development of a nocturnal meso-

scale convective complex. Mon. Wea. Rev., 121, 1078–1098,

https://doi.org/10.1175/1520-0493(1993)121,1078:EOECPT.
2.0.CO;2.

——, J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017:

Mesoscale vertical motions near nocturnal convection initia-

tion in PECAN. Mon. Wea. Rev., 145, 2919–2941, https://

doi.org/10.1175/MWR-D-17-0005.1.

——,R.D.Roberts, J. Sun, T.M.Weckwerth, and J.W.Wilson, 2018:

Physical processes influencing elevated convection initiation

during 25–26 June PECAN: Observations and numerical simu-

lations. Special Symp. on Plains Elevated Convection At Night

(PECAN), Austin, TX, Amer. Meteor. Soc., 1.5, https://

ams.confex.com/ams/98Annual/webprogram/Paper335614.html.

Turner, D., 2016a: FP2 AERIoe thermodynamic profile retrieval

data, version 1.0. UCAR/NCAR–Earth Observation Labora-

tory, accessed 1 June 2018, https://doi.org/10.5065/d6x63k9k.

——, 2016b: FP3 AERIoe thermodynamic profile retrieval data,

version 2.0. UCAR/NCAR–Earth Observation Laboratory,

accessed 1 June 2018, https://doi.org/10.5065/D6Z31WV0.

——, 2016c: FP5 AERIoe thermodynamic profile retrieval data,

version 2.0. UCAR/NCAR–Earth Observation Laboratory,

accessed 1 June 2018, https://doi.org/10.5065/D61V5C5J.

——, 2016d: FP6 ARM surface meteorology data, version 1.0.

UCAR/NCAR–EarthObservingLaboratory, accessed 1 June

2018, https://doi.org/10.5065/D6RR1WN0.

——, 2016e: MP1 OU/NSSL CLAMPS Doppler lidar VAD

wind data, version 1.0. UCAR/NCAR–Earth Observing

Laboratory, accessed 1 June 2018, https://doi.org/10.5065/

D6BR8QJH.

——, and U. Löhnert, 2014: Information content and uncertainties

in thermodynamic profiles and liquid cloud properties re-

trieved from the ground-based Atmospheric Emitted Radi-

ance Interferometer (AERI). J. Appl. Meteor. Climatol., 53,

752–771, https://doi.org/10.1175/JAMC-D-13-0126.1.

UCAR/NCAR, 2015a: FP1 ARM central facility radiosonde

data, version 1. UCAR/NCAR–Earth Observation Labo-

ratory, accessed 1 June 2018, https://data.eol.ucar.edu/dataset/

485.021.

——, 2015b: FP3 FP4 FP5 QC 5min surface data, tilt corrected,

version 1.0. UCAR/NCAR–Earth Observing Laboratory, ac-

cessed 1 June 2018, https://doi.org/10.5065/D6BZ645V.

——, 2015c: FP4 NCAR/EOL 915MHz profiler NIMA consensus

winds and moments, version 1.0. UCAR/NCAR–Earth Ob-

serving Laboratory, accessed 1 June 2018, https://doi.org/

10.5065/D6RV0KXH.

——, 2015d: FP5 NCAR/EOL 915MHz profiler 30 minute con-

sensus winds and moments data, version 1.0. UCAR/NCAR–

Earth Observing Laboratory, accessed 1 June 2018, https://

doi.org/10.5065/D6H993DQ.

——, 2016a: FP4 NCAR/EOL QC soundings, version 2.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D63776XH.

——, 2016b: FP5 NCAR/EOL QC soundings, version 2.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D6ZG6QF7.

——, 2016c: MP4 NCAR/EOL MISS 915MHz profiler 30 minute

consensus winds and moments and surface meteorology data,

version 1.0. UCAR/NCAR–Earth Observing Laboratory, ac-

cessed 1 June 2018, https://doi.org/10.5065/D6RJ4GPJ.

——, 2016d:MP4NCAR/EOLQC soundings, version 2.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D6707ZNV.

——, 2017: FP3 NCAR/EOL 449MHz profiler 30 minute consen-

sus winds data, version 1.0 [PRELIMINARY]. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D66W98T7.

Vaisala, 2017: Vaisala RadiosondeRS41Measurement Performance.

Ref. B211356EN-B, 28 pp., https://www.vaisala.com/sites/

default/files/documents/WEA-MET-RS41-Performance-White-

paper-B211356EN-B-LOW-v3.pdf.

AUGUST 2019 DEGEL IA ET AL . 2763

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/JAS-D-15-0307.1
https://doi.org/10.1007/s10546-010-9583-z
https://doi.org/10.5439/1025127
https://doi.org/10.5065/D68S4MVH
https://ams.confex.com/ams/32AgF22BLT3BG/webprogram/Paper294866.html
https://ams.confex.com/ams/32AgF22BLT3BG/webprogram/Paper294866.html
https://doi.org/10.1175/BAMS-D-14-00173.1
https://doi.org/10.1175/MWR-D-14-00126.1
https://doi.org/10.1175/WAF-D-16-0222.1
https://doi.org/10.1175/WAF-D-16-0222.1
https://doi.org/10.1002/we.288
https://ams.confex.com/ams/98Annual/webprogram/Paper336167.html
https://ams.confex.com/ams/98Annual/webprogram/Paper336167.html
https://doi.org/10.1175/2010MWR3125.1
https://doi.org/10.1175/2010MWR3125.1
https://doi.org/10.1007/s00703-001-0594-7
https://doi.org/10.1007/s00703-001-0594-7
https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2
https://doi.org/10.1175/MWR-D-17-0005.1
https://doi.org/10.1175/MWR-D-17-0005.1
https://ams.confex.com/ams/98Annual/webprogram/Paper335614.html
https://ams.confex.com/ams/98Annual/webprogram/Paper335614.html
https://doi.org/10.5065/d6x63k9k
https://doi.org/10.5065/D6Z31WV0
https://doi.org/10.5065/D61V5C5J
https://doi.org/10.5065/D6RR1WN0
https://doi.org/10.5065/D6BR8QJH
https://doi.org/10.5065/D6BR8QJH
https://doi.org/10.1175/JAMC-D-13-0126.1
https://data.eol.ucar.edu/dataset/485.021
https://data.eol.ucar.edu/dataset/485.021
https://doi.org/10.5065/D6BZ645V
https://doi.org/10.5065/D6RV0KXH
https://doi.org/10.5065/D6RV0KXH
https://doi.org/10.5065/D6H993DQ
https://doi.org/10.5065/D6H993DQ
https://doi.org/10.5065/D63776XH
https://doi.org/10.5065/D6ZG6QF7
https://doi.org/10.5065/D6RJ4GPJ
https://doi.org/10.5065/D6707ZNV
https://doi.org/10.5065/D66W98T7
https://www.vaisala.com/sites/default/files/documents/WEA-MET-RS41-Performance-White-paper-B211356EN-B-LOW-v3.pdf
https://www.vaisala.com/sites/default/files/documents/WEA-MET-RS41-Performance-White-paper-B211356EN-B-LOW-v3.pdf
https://www.vaisala.com/sites/default/files/documents/WEA-MET-RS41-Performance-White-paper-B211356EN-B-LOW-v3.pdf


Vermeesch, K., 2015: FP2 Greensburg, KS radiosonde

data, version 1.0. UCAR/NCAR–Earth Observation

Laboratory, accessed 1 June 2018, https://doi.org/10.5065/

D6FQ9TPH.

Wagner, T., D. Turner, and R. Newsom, 2016a: MP3 University of

Wisconsin SPARCDoppler lidar VADwind data, version 2.0.

UCAR/NCAR–Earth Observing Laboratory, accessed 1 June

2018, https://doi.org/10.5065/D6V9869B.

——, E. Olson, N. Smith, and W. Feltz, 2016b: MP3 Univer-

sity of Wisconsin SPARC AERIoe thermodynamic

profile data, version 1.0. UCAR/NCAR–Earth Observing

Laboratory, accessed 1 June 2018, https://doi.org/10.5065/

D60Z71HC.

——, ——, ——, and ——, 2016c: Mobile PISA 3 UW/SSEC

SPARC radiosonde data, version 2.0. UCAR/NCAR–Earth

Observing Laboratory, accessed 1 June 2018, https://doi.org/

10.5065/D6VH5M7B.

——, ——, ——, and ——, 2016d: MP3 University of Wisconsin

SPARC surface meteorological data, version 1.0. UCAR/

NCAR–Earth Observing Laboratory, accessed 1 June 2018,

https://doi.org/10.5065/D6N014XZ.

Wang, X., D. Parrish, D. Kleist, and J.Whitaker, 2013: GSI 3DVar-

based ensemble–variational hybrid data assimilation for

NCEP Global Forecast System: Single-resolution experi-

ments. Mon. Wea. Rev., 141, 4098–4117, https://doi.org/

10.1175/MWR-D-12-00141.1.

Wang, Y., and X. Wang, 2017: Direct assimilation of radar re-

flectivity without tangent linear and adjoint of the nonlinear

observation operator in the GSI-based EnVar system: Meth-

odology and experiment with the 8 May 2003 Oklahoma City

tornadic supercell. Mon. Wea. Rev., 145, 1447–1471, https://

doi.org/10.1175/MWR-D-16-0231.1.

Waugh, S., and C. Ziegler, 2017: NSSL mobile mesonet data, ver-

sion 1.1. UCAR/NCAR–Earth Observing Laboratory, ac-

cessed 1 June 2018, https://doi.org/10.5065/D64M92RG.

Wei,M., Z. Toth,R.Wobus, andY. Zhu, 2008: Initial perturbations

based on the ensemble transform (ET) technique in theNCEP

global operational forecast system. Tellus, 60A, 62–79, https://

doi.org/10.1111/j.1600-0870.2007.00273.x.

Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B.

Klemp, 2008: Experiences with 0–36-h explicit convective

forecasts with the WRF-ARW Model. Wea. Forecasting, 23,

407–437, https://doi.org/10.1175/2007WAF2007005.1.

Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble

Kalman filter analyses and forecasts of a severe mesoscale

convective system using different choices of microphysics

schemes. Mon. Wea. Rev., 142, 3243–3263, https://doi.org/

10.1175/MWR-D-13-00260.1.

Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008:

Ensemble data assimilation with the NCEP Global Forecast

System.Mon.Wea. Rev., 136, 463–482, https://doi.org/10.1175/

2007MWR2018.1.

Wilson, J. W., S. B. Trier, D. W. Reif, R. D. Roberts, and T. M.

Weckwerth, 2018: Nocturnal elevated convection initiation of

the PECAN 4 July hailstorm. Mon. Wea. Rev., 146, 243–262,

https://doi.org/10.1175/MWR-D-17-0176.1.

Wulfmeyer, V., H. Bauer, M. Grzeschik, A. Behrendt,

F. Vandenberghe, E. V. Browell, S. Ismail, and R. A. Rerrare,

2006: Four-dimensional variational assimilation of water va-

por differential absorption lidar data: The first case study

within IHOP_2002. Mon. Wea. Rev., 134, 209–230, https://
doi.org/10.1175/MWR3070.1.

Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor

(MRMS) quantitative precipitation estimation: Initial oper-

ating capabilities. Bull. Amer. Meteor. Soc., 97, 621–638,

https://doi.org/10.1175/BAMS-D-14-00174.1.

Ziegler, C., M. Coniglio, M. Parker, and R. Schumacher, 2016:

CSU/NCSU/NSSL MGAUS radiosonde data, version 3.0.

UCAR/NCAR–Earth Observing Laboratory, accessed 1 June

2018, https://doi.org/10.5065/D6W66HXN.

2764 MONTHLY WEATHER REV IEW VOLUME 147

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/8/2739/4864903/m
w

r-d-18-0423_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.5065/D6FQ9TPH
https://doi.org/10.5065/D6FQ9TPH
https://doi.org/10.5065/D6V9869B
https://doi.org/10.5065/D60Z71HC
https://doi.org/10.5065/D60Z71HC
https://doi.org/10.5065/D6VH5M7B
https://doi.org/10.5065/D6VH5M7B
https://doi.org/10.5065/D6N014XZ
https://doi.org/10.1175/MWR-D-12-00141.1
https://doi.org/10.1175/MWR-D-12-00141.1
https://doi.org/10.1175/MWR-D-16-0231.1
https://doi.org/10.1175/MWR-D-16-0231.1
https://doi.org/10.5065/D64M92RG
https://doi.org/10.1111/j.1600-0870.2007.00273.x
https://doi.org/10.1111/j.1600-0870.2007.00273.x
https://doi.org/10.1175/2007WAF2007005.1
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/2007MWR2018.1
https://doi.org/10.1175/2007MWR2018.1
https://doi.org/10.1175/MWR-D-17-0176.1
https://doi.org/10.1175/MWR3070.1
https://doi.org/10.1175/MWR3070.1
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.5065/D6W66HXN

